网上赌博游戏犯法吗-哪里网上赌博合法_网上百家乐游戏玩法_全讯网600cc (中国)·官方网站
高等教育領域數字化綜合服務平臺
云上高博會服務平臺
高校科技成果轉化對接服務平臺
大學生創新創業服務平臺
登錄
|
注冊
|
搜索
搜 索
綜合
項目
產品
日期篩選:
一周內
一月內
一年內
不限
碳酸二甲
酯
下游系列精細化工產品
天苯胺基甲酸甲酯廣泛用于多種優良殺蟲劑的合成中間體,還可用于其他各種農藥、醫藥、精細化工等領域中;目前其制備方法都直接或間接使用劇毒的光氣作為原料,對環境污染嚴重,而且生產成本較高。本技術直接采用碳酸二甲酯與苯胺進行酯交換合成,反應條件溫和,收率較高,是一條清潔生產工藝。 肼基甲酸甲酯是醫藥卡巴、卡巴多司、卡巴氧、阿苯達唑等的中間體,還可用于合成碳酰肼等。由碳酸二甲酯與水合肼一步合成,產率高、無三廢,過程清潔無毒。年產1000噸規模,投資90萬元。 三氯甲基碳酸酯替代光氣及雙光氣,在有機合成、高分子材料、醫藥、農藥、香料和染料等領域應用極其廣泛。年產1萬噸規模,投資2200萬元。 碳酰肼是一種方便、安全的水處理劑。目前碳酰肼的合成方法都采用劇毒的原料來合成,環境危害較大。本課題組采用碳酸二甲酯生產碳酰肼,反應條件溫和,設備簡單,工藝安全,無三廢。整個過程轉化率達95%以上,而選擇性幾乎100%。是綠色清潔工藝。國際先進。 呋喃唑酮是一種具有較廣抗菌譜的呋喃類殺菌劑,對多種革蘭氏陽性及陰性大腸桿菌、炭疽桿菌、副傷寒桿菌和痢疾桿菌等均有效,主要用于治療細菌性痢疾、腸炎等,也可用于治療尿道感染;近年來用于治療傷寒,療效較好。 目前,國內呋喃唑酮的生產廠有十多家,但其合成方法主要為乙醇胺、尿素路線,該法工藝流程長、三廢嚴重。本課題組采用碳酸二甲酯羰基化路線合成呋喃唑酮,反應路線短、條件溫和、操作簡易。整個過程基本無三廢、收率高,為清節生產工藝。年產3000噸,設備投資約1000萬元。
華東理工大學
2021-04-13
單嘧磺隆和單嘧磺
酯
合成工藝的綠色研究
項目簡介: 單嘧磺隆和單嘧磺酯是超高效、廣譜、安全的綠色化農藥品種,分別于 2007、2013 年通過農業部審核,獲得農業部正式登記證。其中單嘧磺隆適用于小麥、谷子、玉米等主要作物,尤其是作為谷子除草劑,它的作用無可替代,我國玉米種植面積為 5.1 億畝,小麥 4.5億畝,谷子 3000 萬畝,因而市場相當廣闊。目前單嘧磺隆、單嘧磺酯原藥生產廢水量較大,亟需對它們的合成工藝進行更深入的研究,以實現合成工藝綠色化,使整個工藝廢水達到“零排放”。 項目特色: 設計單嘧磺隆生產工藝路線時,對氨解工段反應進行改進,用水代替有機溶劑作為反應溶劑,使生產工藝更為綠色化;對氨基酯工段后處理進行了改進,通過蒸餾回收了丙酮;對關環工段后處理進行了改進,在近回流情況下通過水萃取除掉無機鹽,水可以通過蒸發回用,既保證了中間體的純度,又減少了廢水排放。設計廢水處理方案時,采用了“生產工藝廢水套用—蒸發回用—結晶”這樣的一個內循環過程,不僅大大降低了生產工藝廢水的處理成本,而且回收絕大部分的水以及無機鹽。可以實現水回用,基本達到廢液“零排放”,滿足了節能環保的要求。該方法不僅操作簡便,不需要增加額外的設備,運行成本低。 本項目先后承擔國家“十五”科技攻關 3 項,“十一五”科技支撐 1 項、科技部推廣 1 項,農業部成果轉化 1 項、天津市重點攻關 1項和天津市成果轉化 1 項;曾獲國家技術發明二等獎、國家發明創業獎,教育部科技進步二等獎、天津市科技發明一等獎、天津市發明專利金獎,天津市最有價值發明專利稱號,天津科技重大成就獎等。 社會貢獻和經濟效益: 可降低單嘧磺隆生產工藝廢水的處理成本,而且回收絕大部分的水、無機鹽以及部分原料,能基本達到廢液“零排放”。同時,可能該方法應用于同類產品單嘧磺酯等的生產工藝廢水處理中。該項目不僅節約成本,更重要的是它基本實現生產工藝“綠色化”,這對單嘧磺隆、單嘧磺酯的推廣具有非常重要的意義。
南開大學
2021-04-13
碳酸二甲
酯
下游系列精細化工產品
苯胺基甲酸甲酯廣泛用于多種優良殺蟲劑的合成中間體,還可用于其他各種農藥、醫藥、精細化工等領域中。目前其制備方法都直接或間接使用劇毒的光氣作為原料,對環境污染嚴重,而且生產成本較高。本技術直接采用碳酸二甲酯與苯胺進行酯交換合成,反應條件溫和,收率較高,是一條清潔生產工藝。 肼基甲酸甲酯是醫藥卡巴、卡巴多司、卡巴氧、阿苯達唑等的中間體,還可用于合成碳酰肼等。本技術由碳酸二甲酯與水合肼一步合成,產率高、無三廢,過程清潔無毒。年產1000噸規模,投資90萬元。 三氯甲基碳酸酯替代光氣及雙光氣,在有機合成、高分子材料、醫藥、農藥、香料和染料等領域應用極其廣泛。年產1萬噸規模,投資2200萬元。 碳酰肼是一種方便、安全的水處理劑。目前碳酰肼的合成方法都采用劇毒的原料來合成,環境危害較大。本技術采用碳酸二甲酯生產碳酰肼,反應條件溫和,設備簡單,工藝安全,無三廢。整個過程轉化率達95%以上,而選擇性幾乎100%。是綠色清潔生產工藝。 呋喃唑酮是一種具有較廣抗菌譜的呋喃類殺菌劑,對多種革蘭氏陽性及陰性大腸桿菌、炭疽桿菌、副傷寒桿菌和痢疾桿菌等均有效,主要用于治療細菌性痢疾、腸炎等,也可用于治療尿道感染;近年來用于治療傷寒,療效較好。本技術采用碳酸二甲酯羰基化路線合成呋喃唑酮,反應路線短、條件溫和、操作簡易。整個過程基本無三廢、收率高,為清潔生產工藝。年產3000噸,設備投資約1000萬。
華東理工大學
2021-04-13
聚 β 羥基丁酸
酯
與異亮氨酸聯產菌代謝工程改造
本研究構建一種谷氨酸棒桿菌基因工程菌,使其同時發酵生產兩種產品:聚羥基脂肪酸酯和異亮氨酸;前者是胞內產品,后者是胞外產品。該基因工程菌可以降低生產成本,具有工業應用前景。研究結果顯示:將 phaCAB 基因簇導入 WM001后,WM001/pDXW-8-phaCAB 96h 產量為 9.58 g/L,而 WM001/pDXW-8 96h 產量為6.65 g/L,產率提高 65%達到 0.15g 異亮氨酸/g 葡萄糖。PHA 產量達到 28.7%(w/w)。 關鍵技術 聚羥基脂肪酸酯(PHAs)是部分微生物生存在具有較高碳源與氮源的條件下,生成的一類微生物自身碳源、能源儲備物的胞內聚酯。根據相關報道,將 PHB 合成代謝基因簇導入細胞內,可實現 PHB 與某些代謝產物的聯產和增產,提高底物的利用率。L-異亮氨酸是一種人體必需氨基酸,因其在醫藥、食品和健康保健領域有廣泛的應用,而使其近幾年的生產能力發展迅速,目前國際上比較先進的主流生產方式為發酵法生產 L-異亮氨酸。谷氨酸棒桿菌(Corynebacteriumglutamicum)是一種小棒狀、革蘭氏陽性的食品安全生產菌,目前已經用于工業生產 L-異亮氨酸,本成果構建能高產 PHAs 的 C. glutamicum 菌株,具有工業化應用潛力。
江南大學
2021-04-11
雙環戊二烯氧乙基甲基丙烯酸
酯
雙環戊二烯氧乙基甲基丙烯酸酯是一種特殊功能性單體,具有耐水性、耐溶劑性、柔韌性、附著力好等優點,是光固化材料理想的活性稀釋劑。可廣泛地應用在UV涂料、膠黏劑、油墨,以及樹脂的改性等領域。
山東瑞博龍化工科技股份有限公司
2021-09-09
二氧化釩
基
單晶體的制備方法及二氧化釩
基
單晶體
絕緣體-金屬相變材料領域。 利用簡單易行的方法制備大尺寸高質量二氧化釩單晶體,實現了二氧化釩單晶體電阻的快速溫度響應。
中國科學技術大學
2021-04-14
銅
基
量子自旋液體的候選者和銅
基
高溫超導材料母體在摻雜后的電子結構
劉奇航及其合作者以最近由中科院物理所領銜的研究團隊發現的ZnCu3(OH)6BrF為例,采用修正后的單體平均場密度泛函理論方法,對這一體系的本征和摻雜行為進行了詳盡的模擬。研究發現,ZnCu3(OH)6BrF摻雜后,摻入的電子并沒有成為期待的“自由載流子”,而是局域在一個銅原子周圍,引起了局域形變。這種電子與束縛它的晶格畸變的復合體稱為極化子(如圖一所示)。本征材料的帶隙中形成新的電子態。因此,電子摻雜后,ZnCu3(OH)6BrF并沒有實現半導體到導體的轉變。相比之下,具有類似CuO4局部環境的銅氧化物高溫超導體的母體材料Nd2CuO4顯現除了不同的隨摻雜濃度變化的導電性。研究發現,低摻雜濃度時,銅原子附近形成較為擴展的極化子,因此在高摻雜濃度時,這些極化子之間的躍遷可以使系統導電性大大增加,實現半導體到導體的轉變,與實驗觀測很好地吻合。? 該研究圓滿地解釋了最近實驗上觀測到的Kagome晶格的鋅銅羥基鹵化物在摻雜后并不導電的現象,指出要在量子自旋液體實現超導,僅僅找到量子自旋液體體系是遠遠不夠的,還必須實現有效摻雜,注入一定濃度的“自由載流子”,為耕耘在該領域的實驗工作者提出了新的挑戰和實驗方向。
南方科技大學
2021-04-13
鎳
基
高溫合金組織結構超聲智能評價方法
航空發動機機匣是一種復雜薄壁零件,其加工變形問題是我國航空發動機制造的關鍵技術瓶頸。機匣毛坯組織結構的均勻性是影響機匣加工變形的主要原因之一。鎳基高溫合金具有優異的高溫強度,良好的抗氧化和抗熱腐蝕性能,是航空發動機機匣的主要原料。鎳基高溫合金鑄、鍛件組織結構的無損檢測與定量評價是實現組織結構均勻性檢測與評價的基礎,有助于準確判斷毛坯制造質量,表征制造工藝改進的有效性,降低機匣加工變形概率。 超聲檢測具有穿透能力強,靈敏度和分辨率高、可定位和定量檢測等優點,在航空發動機大規格高溫合金構件制造質量檢測領域得到了廣泛應用。超聲檢測信號特征值與材料組織結構變化、二次相或沉淀物的形成相關,具備有效評價鎳基高溫合金的組織結構的能力。現有鎳基高溫合金鑄、鍛件組織結構的超聲檢測以噪聲波高為主要判據,指標簡單、閾值設置嚴格、誤判率高,無法適應不斷改進的制造工藝。 組織結構超聲定量評價技術的核心是確定微觀組織特征參數與超聲檢測特征參數之間的定量關系模型,其本質是以模型待定系數為決策變量,以評價準確性為目標函數的優化問題。超聲波在鎳基高溫合金中傳播時,受到晶界、相界、孿晶等復雜組織結構的綜合作用,若采用聲速、衰減系數、非線性系數等單一超聲檢測參數對組織結構進行建模與評價,會因信息量的缺失而導致評價誤差大;若增加檢測參數規模,則會導致所對應優化問題的困難性大幅增加。 本研究以鎳基高溫合金組織結構定量評價為主要研究對象,圍繞如何利用協同進化算法求解定量評價的大規模優化問題、以及如何同時利用多種微觀組織特征參數對鎳基高溫合金進行綜合表征展開研究。科研成果為航空發動機機匣鎳基高溫合金毛坯制造質量檢測、評價、性能預測提供技術支持,為制造工藝改進提供數據支持,也可進一步推廣至其它高溫合金、鈦合金等材料中。
南昌航空大學
2021-05-04
硅
基
毫米波集成電路設計
基于CMOS工藝,設計了大量射頻、毫米波收發機和頻率源芯片; CMOS 90nm 60GHz 接收機芯片,集成片上天線,傳輸效率優于IBM芯片90%; CMOS 90nm 21dBm 60GHz功率放大器,性能優于Hittite商用GaAs芯片; CMOS 60GHz 移相器芯片,為開發毫米波相控陣芯片奠定良好基礎;
電子科技大學
2021-04-10
硅
基
新一代鋰電負極材料制備
項目成果/簡介:目前鋰離子電池的能量密度已經越來越不能滿足其在電動汽車、智能手機和大規模儲能方面的應用。鋰離子電池的能量密度低主要是因為所采用的正負極材料的比容量較低,尤其是負極材料石墨,其理論比容量為 372 mAh/g。目前研究最多的、最具有商業化前景的負極材料為硅基負極材料,其理論比容量為 4200 mAh/g,是石墨的十倍以上。據招商證券預計,硅基負極材料在 2020 年的市場使用量接近于 5 萬噸,銷售額接近于 50 億。 然而硅基材料在充放電過程中較大的體積變化率(>300%)限制了其商業化應用,較大的體積變化導致極片碎裂以及電解液在材料表面持續分解,從而造成其循環性能劇烈下降。另外,硅基材料為半導體,其導電性較差,從而導致硅基負極材料的倍率性能較差。如何解決硅基負極材料這兩大缺點是普及硅基材料在鋰離子電池應用的關鍵。 陳永勝教授課題組結合在納米技術和石墨烯材料領域的專長,經過近 10 幾年的研究,采用低成本的原材料、易工業化的工藝技術制備了石墨烯包覆的硅基負極材料,主要技術創新點包括:1)采用獨特的、具有自主知識產權的納米技術將大粒徑的硅粉進行納米化處理,納米化大大緩解了硅在充放電過程中體積變化的問題,從而從根本上解決了硅基負極材料循環性能差的問題;2)石墨烯包覆則充分發揮了石墨烯導電導熱性能好、機械性能優異、電化學性能穩定等特點,改善了材料的鋰離子擴散性能和電子導電性,大大提高了功率特性; 14隔絕了硅與電解液的直接接觸,抑制副反應造成的電解液分解和材料侵蝕,提高了首次效率,延緩了使用過程中的壽命衰減;進一步減緩了充放電過程中硅的體積變化,維持材料結構的整體穩定性,極大地提升了循環特性。效益分析:陳永勝教授課題組發明的石墨烯包覆硅基負極材料,從制備過程上講,具有工藝簡單、成本低廉、易工業化的特點;從性能上講,具有比容量高、穩定性好、壓實密度大等優點,與高比容量正極組成的鋰離子電池的能量密度是當前商業化鋰離子電池能量密度的數倍以上。
南開大學
2021-04-11
首頁
上一頁
1
2
...
23
24
25
...
67
68
下一頁
尾頁
熱搜推薦:
1
云上高博會企業會員招募
2
64屆高博會于2026年5月在南昌舉辦
3
征集科技創新成果
新利88网上娱乐
|
百家乐庄闲出现几率
|
百家乐大赌场娱乐网规则
|
状元百家乐的玩法技巧和规则
|
大发888娱乐游戏
|
百家乐官网职业赌徒的解密
|
电子百家乐博彩正网
|
百家乐官网中B是什么
|
澳门赌场美女
|
属猴人做生意门面的风水
|
大发888dafa888
|
至尊百家乐官网娱乐
|
幸运水果机电脑版
|
百家乐官网赌博机玩法
|
兄弟百家乐的玩法技巧和规则
|
解析百家乐官网投注法
|
百家乐最好的玩法
|
三晋棋牌中心
|
真钱百家乐送钱
|
娱乐
|
澳门百家乐秘积
|
在线百家乐投注
|
百家乐游戏官网
|
德州扑克游戏
|
如何玩百家乐官网赚钱
|
易发百家乐
|
大发888游戏在线客服
|
百家乐转盘技巧
|
迪威百家乐官网现场
|
四海资迅
|
大发888游戏官方下载客户端
|
顶尖百家乐官网的玩法技巧和规则
|
大发888娱乐城优惠码lm0
|
网页百家乐官网
|
百家乐官网必赢法冯耘
|
rmb百家乐的玩法技巧和规则
|
玩百家乐保时捷娱乐城
|
百家乐官网千术手法
|
兖州市
|
网上百家乐投注技巧
|
免费百家乐官网追号
|