网上赌博游戏犯法吗-哪里网上赌博合法_网上百家乐游戏玩法_全讯网600cc (中国)·官方网站

|
中山大學
  • 144 高校采購信息
  • 425 科技成果項目
  • 1 創新創業項目
  • 0 高校項目需求

網絡的結構可預測性與網絡結構的最短壓縮比特串長度呈線性關系

2021-04-13 00:00:00
云上高博會 http://www.6gsl1hl.xyz
點擊收藏
所屬領域:
新一代信息技術
項目成果/簡介:

 在本研究工作中,該團隊利用信息論和統計物理兩個領域中熵的相關理論,對網絡結構預測極限進行了研究。直觀地說,一個可以僅用幾個詞描述的網絡結構意味著它很簡單,其邊也很容易預測。例如二維晶格或一維鏈狀結構。相反,如果一個網絡需要很長的語言才能描述清楚,那么它應該具有非常復雜的結構,其結構很難預測。在計算機領域,任何網絡的結構都可以被編碼成二進制字符串。這啟發了團隊探尋最短二進制編碼字符串長度,也就是熵,和可預測性之間的關系。

       通過研究,該團隊發現來自不同領域,很多大小不一的網絡,其結構的最短壓縮長度和可預測性之間存在一個普遍的線性關系。基于香農信源編碼定理,該團隊在隨機網絡上證明了這種線性關系。

       進一步,利用這一線性關系,該團隊推導出網絡結構預測算法的性能上界,揭示出包括機器學習在內的預測算法性能尚存在多大的提升空間。因此,該性能界可用于指導未來在線商業推薦系統、蛋白質相互作用探測等場景中的算法設計。另外,該理論的一個有趣的用途是,可以實現在無需任何預測算法的情況下,通過網絡結構壓縮數據大小來估計一個網絡數據集的商業價值。 

項目階段:
試用
會員登錄可查看 合作方式、專利情況及聯系方式

掃碼關注,查看更多科技成果

取消
百家乐珠盘路| 查看百家乐赌博| 百家乐官网出千技巧| 百家乐官网投注方法| 乐宝百家乐娱乐城| 大发888登录器下载| 扑克王百家乐官网的玩法技巧和规则| 百家乐官网赌场讨论群| 威尼斯人娱乐电子游戏| 百家乐官网游戏网站| 太子百家乐娱乐城| 好用百家乐官网分析软件| 百家乐英皇娱乐平台| 百家乐官网怎么看门路| 真人百家乐好不好玩| 九龙娱乐| 网上百家乐赢钱公式| 大发888 ber娱乐场下载| 淘宝博百家乐官网的玩法技巧和规则 | 百家乐官网赌博走势图| 博天堂百家乐的玩法技巧和规则 | 百家乐官网网页游戏网址| 网页百家乐的玩法技巧和规则| 百家乐官网怎么样投注| 威尼斯人娱乐场 新葡京| 巴特百家乐官网的玩法技巧和规则 | 真钱百家乐哪里最好| 老牌百家乐官网娱乐城| 尊龙百家乐娱乐场开户注册| 百家乐官网五种路单规| 娱网棋牌官网| 澳门百家乐玩| 百家乐官网五湖四海赌场娱乐网规则 | 元游棋牌游戏| 百家乐游戏算牌| 利来网| 大都会百家乐的玩法技巧和规则| 發中發百家乐官网的玩法技巧和规则| 路单百家乐官网的玩法技巧和规则 | 百家乐官网娱乐网佣金| 金钱豹百家乐的玩法技巧和规则|